A Primal-Relaxed Dual Global Optimization Approach1

نویسندگان

  • C. A. FLOUDAS
  • F. A. Al-Khayyal
  • B. Jaumard
  • P. M. Pardalos
چکیده

A deterministic global optimization approach is proposed for nonconvex constrained nonlinear programming problems. Partitioning of the variables, along with the introduction of transformation variables, if necessary, convert the original problem into primal and relaxed dual subproblems that provide valid upper and lower bounds respectively on the global optimum. Theoretical properties are presented which allow for a rigorous solution of the relaxed dual problem. Proofs of -finite convergence and -global optimality are provided. The approach is shown to be particularly suited to (a) quadratic programming problems, (b) quadratically constrained problems, and (c) unconstrained and constrained optimization of polynomial and rational polynomial functions. The theoretical approach is illustrated through a few example problems. Finally, some further developments in the approach are briefly discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New Formulations and Branching Strategies for the Gop Algorithm

In Floudas and Visweswaran (1990, 1993), a deterministic global optimization approach was proposed for solving certain classes of nonconvex optimization problems. A global optimization algorithm, GOP, was presented for the solution of the problem through a series of primal and relaxed dual problems that provide valid upper and lower bounds respectively on the global solution. The algorithm was ...

متن کامل

Primal-dual path-following algorithms for circular programming

Circular programming problems are a new class of convex optimization problems that include second-order cone programming problems as a special case. Alizadeh and Goldfarb [Math. Program. Ser. A 95 (2003) 3-51] introduced primal-dual path-following algorithms for solving second-order cone programming problems. In this paper, we generalize their work by using the machinery of Euclidean Jordan alg...

متن کامل

Global Optimality Conditions for Discrete and Nonconvex Optimization - With Applications to Lagrangian Heuristics and Column Generation

The well-known and established global optimality conditions based on the Lagrangian formulation of an optimization problem are consistent if and only if the duality gap is zero. We develop a set of global optimality conditions which are structurally similar but which are consistent for any size of the duality gap. This system characterizes a primal–dual optimal solution by means of primal and d...

متن کامل

Global optimization for molecular conformation problems

A primal-relaxed dual global optimization algorithm is presented along with an extensive review for finding the global minimum energy configurations of microclusters composed by particles interacting with any type of two-body central forces. First, the original nonconvex expression for the total potential energy is transformed to the difference of two convex functions (DC transformation) via an...

متن کامل

Unconstrained and constrained global optimization of polynomial functions in one variable

In Floudas and Visweswaran (1990), a new global optimization algorithm (GOP) was proposed for solving constrained nonconvex problems involving quadratic and polynomial functions in the objective function and/or constraints. In this paper, the application of this algorithm to the special case of polynomial functions of one variable is discussed. The special nature of polynomial functions enables...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1993